BM3D Image Denoising using Learning-based Adaptive Hard Thresholding
نویسندگان
چکیده
Image denoising is an important pre-processing step in most imaging applications. Block Matching and 3D Filtering (BM3D) is considered to be the current state-of-art algorithm for additive image denoising. But this algorithm uses a fixed hard thresholding scheme to attenuate noise from a 3D block. Experiments show that this fixed hard thresholding deteriorates the performance of BM3D because it does not consider the context of corresponding blocks. In this thesis, we propose a learning based adaptive hard thresholding method to solve this issue. Also, BM3D algorithm requires as an input the value of the noise level in the input image. But in real life it is not practical to pass as an input such noise level. In this thesis, we also attempt to automatically estimate the level of the noise in the input image. Experimental results demonstrate that our proposed algorithm outperforms BM3D in both objective and subjective fidelity criteria.
منابع مشابه
Image Denoising based on Adaptive BM3D and Singular Value Decomposition
In this work a new version of block-matching and 3D filtering (BM3D) denoising approach introduced by Dabov et al. for denoising the image corrupted by additive white Gassian noise is proposed. The BM3D performs collaborative filtering to the 3D image groups composed by similar image blocks with the fixed hard-thresholding operator. The proposed version of BM3D adopts adaptive block-matching th...
متن کاملNonlocal Collaborative l0-Norm Prior for Image Denoising
Spatially adaptive nonparametric regression estimation is one of the most promising recent directions in image processing. The Transforms and Spectral Techniques Research Group at the Department of Signal Processing, Tampere University of Technology, has been active in this novel eld starting from about 2002. The results achieved with application to di¤erent image and video processing problems...
متن کاملNon-local Means using Adaptive Weight Thresholding
Non-local means (NLM) is a popular image denoising scheme for reducing additive Gaussian noise. It uses a patch-based approach to find similar regions within a search neighborhood and estimates the denoised pixel based on the weighted average of all pixels in the neighborhood. All weights are considered for averaging, irrespective of the value of the weights. This paper proposes an improved var...
متن کاملAdaptive Non-local Means Using Weight Thresholding
Non-local means (NLM) is a popular image denoising scheme for reducing additive Gaussian noise. It uses a patch-based approach to find similar regions within a search neighborhood and estimate the denoised pixel based on the weighted average of all the pixels in the neighborhood. All the pixels are considered for averaging, irrespective of the value of their weights. This thesis proposes an imp...
متن کاملNonconvex Weighted ℓp Minimization Based Group Sparse Representation Framework for Image Denoising
Nonlocal image representation or group sparsity has attracted considerable interest in various low-level vision tasks and has led to several state-of-the-art image denoising techniques, such as BM3D, LSSC. In the past, convex optimization with sparsity-promoting convex regularization was usually regarded as a standard scheme for estimating sparse signals in noise. However, using convex regulari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016